3.102 \(\int \frac{\sec ^4(c+d x)}{\sqrt{b \sec (c+d x)}} \, dx\)

Optimal. Leaf size=97 \[ \frac{2 \sin (c+d x) (b \sec (c+d x))^{5/2}}{5 b^3 d}+\frac{6 \sin (c+d x) \sqrt{b \sec (c+d x)}}{5 b d}-\frac{6 E\left (\left .\frac{1}{2} (c+d x)\right |2\right )}{5 d \sqrt{\cos (c+d x)} \sqrt{b \sec (c+d x)}} \]

[Out]

(-6*EllipticE[(c + d*x)/2, 2])/(5*d*Sqrt[Cos[c + d*x]]*Sqrt[b*Sec[c + d*x]]) + (6*Sqrt[b*Sec[c + d*x]]*Sin[c +
 d*x])/(5*b*d) + (2*(b*Sec[c + d*x])^(5/2)*Sin[c + d*x])/(5*b^3*d)

________________________________________________________________________________________

Rubi [A]  time = 0.0586433, antiderivative size = 97, normalized size of antiderivative = 1., number of steps used = 5, number of rules used = 4, integrand size = 21, \(\frac{\text{number of rules}}{\text{integrand size}}\) = 0.19, Rules used = {16, 3768, 3771, 2639} \[ \frac{2 \sin (c+d x) (b \sec (c+d x))^{5/2}}{5 b^3 d}+\frac{6 \sin (c+d x) \sqrt{b \sec (c+d x)}}{5 b d}-\frac{6 E\left (\left .\frac{1}{2} (c+d x)\right |2\right )}{5 d \sqrt{\cos (c+d x)} \sqrt{b \sec (c+d x)}} \]

Antiderivative was successfully verified.

[In]

Int[Sec[c + d*x]^4/Sqrt[b*Sec[c + d*x]],x]

[Out]

(-6*EllipticE[(c + d*x)/2, 2])/(5*d*Sqrt[Cos[c + d*x]]*Sqrt[b*Sec[c + d*x]]) + (6*Sqrt[b*Sec[c + d*x]]*Sin[c +
 d*x])/(5*b*d) + (2*(b*Sec[c + d*x])^(5/2)*Sin[c + d*x])/(5*b^3*d)

Rule 16

Int[(u_.)*(v_)^(m_.)*((b_)*(v_))^(n_), x_Symbol] :> Dist[1/b^m, Int[u*(b*v)^(m + n), x], x] /; FreeQ[{b, n}, x
] && IntegerQ[m]

Rule 3768

Int[(csc[(c_.) + (d_.)*(x_)]*(b_.))^(n_), x_Symbol] :> -Simp[(b*Cos[c + d*x]*(b*Csc[c + d*x])^(n - 1))/(d*(n -
 1)), x] + Dist[(b^2*(n - 2))/(n - 1), Int[(b*Csc[c + d*x])^(n - 2), x], x] /; FreeQ[{b, c, d}, x] && GtQ[n, 1
] && IntegerQ[2*n]

Rule 3771

Int[(csc[(c_.) + (d_.)*(x_)]*(b_.))^(n_), x_Symbol] :> Dist[(b*Csc[c + d*x])^n*Sin[c + d*x]^n, Int[1/Sin[c + d
*x]^n, x], x] /; FreeQ[{b, c, d}, x] && EqQ[n^2, 1/4]

Rule 2639

Int[Sqrt[sin[(c_.) + (d_.)*(x_)]], x_Symbol] :> Simp[(2*EllipticE[(1*(c - Pi/2 + d*x))/2, 2])/d, x] /; FreeQ[{
c, d}, x]

Rubi steps

\begin{align*} \int \frac{\sec ^4(c+d x)}{\sqrt{b \sec (c+d x)}} \, dx &=\frac{\int (b \sec (c+d x))^{7/2} \, dx}{b^4}\\ &=\frac{2 (b \sec (c+d x))^{5/2} \sin (c+d x)}{5 b^3 d}+\frac{3 \int (b \sec (c+d x))^{3/2} \, dx}{5 b^2}\\ &=\frac{6 \sqrt{b \sec (c+d x)} \sin (c+d x)}{5 b d}+\frac{2 (b \sec (c+d x))^{5/2} \sin (c+d x)}{5 b^3 d}-\frac{3}{5} \int \frac{1}{\sqrt{b \sec (c+d x)}} \, dx\\ &=\frac{6 \sqrt{b \sec (c+d x)} \sin (c+d x)}{5 b d}+\frac{2 (b \sec (c+d x))^{5/2} \sin (c+d x)}{5 b^3 d}-\frac{3 \int \sqrt{\cos (c+d x)} \, dx}{5 \sqrt{\cos (c+d x)} \sqrt{b \sec (c+d x)}}\\ &=-\frac{6 E\left (\left .\frac{1}{2} (c+d x)\right |2\right )}{5 d \sqrt{\cos (c+d x)} \sqrt{b \sec (c+d x)}}+\frac{6 \sqrt{b \sec (c+d x)} \sin (c+d x)}{5 b d}+\frac{2 (b \sec (c+d x))^{5/2} \sin (c+d x)}{5 b^3 d}\\ \end{align*}

Mathematica [A]  time = 0.225734, size = 61, normalized size = 0.63 \[ \frac{2 \tan (c+d x) \left (\sec ^2(c+d x)+3\right )-\frac{6 E\left (\left .\frac{1}{2} (c+d x)\right |2\right )}{\sqrt{\cos (c+d x)}}}{5 d \sqrt{b \sec (c+d x)}} \]

Antiderivative was successfully verified.

[In]

Integrate[Sec[c + d*x]^4/Sqrt[b*Sec[c + d*x]],x]

[Out]

((-6*EllipticE[(c + d*x)/2, 2])/Sqrt[Cos[c + d*x]] + 2*(3 + Sec[c + d*x]^2)*Tan[c + d*x])/(5*d*Sqrt[b*Sec[c +
d*x]])

________________________________________________________________________________________

Maple [C]  time = 0.236, size = 356, normalized size = 3.7 \begin{align*}{\frac{2\, \left ( -1+\cos \left ( dx+c \right ) \right ) ^{2} \left ( \cos \left ( dx+c \right ) +1 \right ) ^{2}}{5\,d \left ( \cos \left ( dx+c \right ) \right ) ^{3} \left ( \sin \left ( dx+c \right ) \right ) ^{5}} \left ( 3\,i\sqrt{ \left ( \cos \left ( dx+c \right ) +1 \right ) ^{-1}}\sqrt{{\frac{\cos \left ( dx+c \right ) }{\cos \left ( dx+c \right ) +1}}} \left ( \cos \left ( dx+c \right ) \right ) ^{3}{\it EllipticE} \left ({\frac{i \left ( -1+\cos \left ( dx+c \right ) \right ) }{\sin \left ( dx+c \right ) }},i \right ) \sin \left ( dx+c \right ) -3\,i{\it EllipticF} \left ({\frac{i \left ( -1+\cos \left ( dx+c \right ) \right ) }{\sin \left ( dx+c \right ) }},i \right ) \left ( \cos \left ( dx+c \right ) \right ) ^{3}\sqrt{ \left ( \cos \left ( dx+c \right ) +1 \right ) ^{-1}}\sqrt{{\frac{\cos \left ( dx+c \right ) }{\cos \left ( dx+c \right ) +1}}}\sin \left ( dx+c \right ) +3\,i\sqrt{ \left ( \cos \left ( dx+c \right ) +1 \right ) ^{-1}}\sqrt{{\frac{\cos \left ( dx+c \right ) }{\cos \left ( dx+c \right ) +1}}} \left ( \cos \left ( dx+c \right ) \right ) ^{2}{\it EllipticE} \left ({\frac{i \left ( -1+\cos \left ( dx+c \right ) \right ) }{\sin \left ( dx+c \right ) }},i \right ) \sin \left ( dx+c \right ) -3\,i{\it EllipticF} \left ({\frac{i \left ( -1+\cos \left ( dx+c \right ) \right ) }{\sin \left ( dx+c \right ) }},i \right ) \sqrt{ \left ( \cos \left ( dx+c \right ) +1 \right ) ^{-1}}\sqrt{{\frac{\cos \left ( dx+c \right ) }{\cos \left ( dx+c \right ) +1}}} \left ( \cos \left ( dx+c \right ) \right ) ^{2}\sin \left ( dx+c \right ) -3\, \left ( \cos \left ( dx+c \right ) \right ) ^{3}+2\, \left ( \cos \left ( dx+c \right ) \right ) ^{2}+1 \right ){\frac{1}{\sqrt{{\frac{b}{\cos \left ( dx+c \right ) }}}}}} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

int(sec(d*x+c)^4/(b*sec(d*x+c))^(1/2),x)

[Out]

2/5/d*(-1+cos(d*x+c))^2*(3*I*(1/(cos(d*x+c)+1))^(1/2)*(cos(d*x+c)/(cos(d*x+c)+1))^(1/2)*cos(d*x+c)^3*EllipticE
(I*(-1+cos(d*x+c))/sin(d*x+c),I)*sin(d*x+c)-3*I*(1/(cos(d*x+c)+1))^(1/2)*(cos(d*x+c)/(cos(d*x+c)+1))^(1/2)*Ell
ipticF(I*(-1+cos(d*x+c))/sin(d*x+c),I)*cos(d*x+c)^3*sin(d*x+c)+3*I*(1/(cos(d*x+c)+1))^(1/2)*(cos(d*x+c)/(cos(d
*x+c)+1))^(1/2)*cos(d*x+c)^2*EllipticE(I*(-1+cos(d*x+c))/sin(d*x+c),I)*sin(d*x+c)-3*I*(1/(cos(d*x+c)+1))^(1/2)
*(cos(d*x+c)/(cos(d*x+c)+1))^(1/2)*EllipticF(I*(-1+cos(d*x+c))/sin(d*x+c),I)*cos(d*x+c)^2*sin(d*x+c)-3*cos(d*x
+c)^3+2*cos(d*x+c)^2+1)*(cos(d*x+c)+1)^2/cos(d*x+c)^3/(b/cos(d*x+c))^(1/2)/sin(d*x+c)^5

________________________________________________________________________________________

Maxima [F]  time = 0., size = 0, normalized size = 0. \begin{align*} \int \frac{\sec \left (d x + c\right )^{4}}{\sqrt{b \sec \left (d x + c\right )}}\,{d x} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(sec(d*x+c)^4/(b*sec(d*x+c))^(1/2),x, algorithm="maxima")

[Out]

integrate(sec(d*x + c)^4/sqrt(b*sec(d*x + c)), x)

________________________________________________________________________________________

Fricas [F]  time = 0., size = 0, normalized size = 0. \begin{align*}{\rm integral}\left (\frac{\sqrt{b \sec \left (d x + c\right )} \sec \left (d x + c\right )^{3}}{b}, x\right ) \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(sec(d*x+c)^4/(b*sec(d*x+c))^(1/2),x, algorithm="fricas")

[Out]

integral(sqrt(b*sec(d*x + c))*sec(d*x + c)^3/b, x)

________________________________________________________________________________________

Sympy [F]  time = 0., size = 0, normalized size = 0. \begin{align*} \int \frac{\sec ^{4}{\left (c + d x \right )}}{\sqrt{b \sec{\left (c + d x \right )}}}\, dx \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(sec(d*x+c)**4/(b*sec(d*x+c))**(1/2),x)

[Out]

Integral(sec(c + d*x)**4/sqrt(b*sec(c + d*x)), x)

________________________________________________________________________________________

Giac [F]  time = 0., size = 0, normalized size = 0. \begin{align*} \int \frac{\sec \left (d x + c\right )^{4}}{\sqrt{b \sec \left (d x + c\right )}}\,{d x} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(sec(d*x+c)^4/(b*sec(d*x+c))^(1/2),x, algorithm="giac")

[Out]

integrate(sec(d*x + c)^4/sqrt(b*sec(d*x + c)), x)